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Abstract. An original approach to automatic classification of auroras by machine identification of 

images received from sky photo recorders, also called all-sky imagers, is proposed. A total of 163899 

sky images within the auroral oval (Kola Peninsula, Russia) were selected at 10-minute intervals over 

a 10-year period. We propose an intelligent information system designed to classify each acquired 

image into one of seven predefined categories. Analysis of the quality metrics of the system built on 

the basis of the ResNet50 neural network architecture showed the accuracy of the classification at the 

level of 96 %, which is practically unattainable in the conditions of manual data processing on 

samples of such a volume. The result of automatic classification of sky images based on the proposed 

system is available at the link: ( https://disk.yandex.ru/i/76OMyWR4YyVYuw ). 
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1. INTRODUCTION

It is known that the highest risks of technosphere safety reduction associated with the effects of 

space weather on technical systems and networks are determined within the boundaries of the auroral 

oval - a belt of intense luminosity created by the intrusion of electrons from near-Earth space into the 

atmosphere [Vorobev et al., 2022; Pilipenko et al., 2023]. At the same time, for the majority of high-

latitude regions of Russia (due to the lack of reliable sources of operational information on the local 

geomagnetic situation), auroras remain practically the only publicly available indicator of space 

weather conditions.  

There are studies indicating that the area of polar lights observation, their luminescence 

intensity and morphology are closely related to the power of manifestation of space weather effects 
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on high-latitude technological systems [Vorobev et al., 2024]. It was shown that the most probable 

level of geoinduced currents (GIT) JVKH registered at Vykhodnoy station (68.83о N, 33.08о E) at 

simultaneous observation of auroras in the north, in the zenith and in the south of the sky relative to 

Lovozero station (67.97о N, 35.02о E) is 0.08, 0.23 and 0.68 A, respectively. The posterior probability 

of the event JVKH > 2 A at observation of auroras in the north of the sky is 5.78%, while the probability 

of exceeding this level at auroras in the zenith and in the south is 10.04% and 14.93%, respectively. 

In the absence of auroras, the probability of JVKH reaching the level of 2 A does not exceed 0.26%, 

and the probability of exceeding 3 A is practically equal to zero.  

Fig. 1. 

We present data that during December 21, 2016 (Fig. 1), the minute-average GIT level was up 

to 0.1 A for periods of no auroras (12:48 UT), 0.7 A for diffuse auroras (17:07 UT), and 1.34 and 

13.06 A for intense auroras of the "arc" (15:35 UT) and "vortex" (15:43 UT) types, respectively 

[Vorobev et al., 2024]. 

The declared results were obtained through manual processing and classification of 1921 

ascaplots [Vorobev et al., 2023], which corresponds to 92208 episodes of 30-min skywave 

observations for 2011-2021. However, as practice has shown, this approach to data representation has 

practically lost its relevance and is of little use in the tasks of analyzing poorly structured information 

collected over half a century. In turn, constantly developing computer vision technologies 

demonstrate the potential for detecting hidden trends and regularities within the observed system over 

large time intervals. Thus, for example, in a conceptually similar way (meaning the concept of 

"Citizen science"), it is possible to detect hidden trends and patterns within the observed system over 

large time intervals. [Steven et al., 2019], which eliminates the need for a deep dive into the subject 

area), in 2018, a previously unknown type of atmospheric phenomena STEVE (from STEVE - Strong 

Thermal Emission Velocity Enhancement) was discovered, which has the appearance of a long light 

streak in the sky [MacDonald et al., 2018; Gallardo-Lacourt et al., 2018]. 

In a broader sense, the development of these technologies in the subject area, in addition to 

clarifying the conditions of occurrence and evolution of extreme geophysical events in the upper 

ionosphere, can contribute to improving the efficiency of management of complex technical systems 

deployed inside the Arctic Zone of the Russian Federation (AZRF). 

Thus, the aim of this work is to develop an approach and an information system for automatic 

classification of auroras on the basis of domestic long-term sky observation data inside the auroral 

oval boundaries, as well as to analyze and assess the relevance of the results obtained. 

It is expected that the results obtained here will open the possibility of conducting a series of 

additional more sophisticated studies consisting in comparing the morphology of polar lights with 

data from magnetometers, ionosondes, or GIT observations, in the corresponding subregion.  
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2. INITIAL DATA AND THEIR PRELIMINARY PROCESSING 

The data for the 10-year period (2015-2024) of the highest-quality optical observations of the 

auroras by the cameras of Obs. Lovozero Observatory (LOZ). It should be noted that the Lovozero 

Obs. Lovozero Observatory (LOZ) is part of the Polar Geophysical Institute (PGI) and is practically 

the only station on the territory of the Russian Federation that has been continuously and for a long 

time conducting observations and recording of auroras, magnetic field variations and other 

geophysical effects of high latitudes caused by processes in the Earth's magnetosphere, ionosphere 

and atmosphere. 

The observational data published in the public domain (http://aurora.pgia.ru:8071/?p=2) are 

RGB images with a resolution of 600×600 px and a sampling step of 10 с. Correlating the selected 

volume of graphic information with the computing power required for its processing and taking into 

account the dynamics of the observed events, it is proposed to consider images with a sampling step 

of 10 min. Also at the stage of preprocessing the images were scaled to the size of 224×224 px, which 

led to a reduction in their volume, and as a result - a significant increase in the training speed of the 

neural network model. 

Thus, after preprocessing, we have skywave observation data from 04.12.2015 (19:00) to 

27.04.2024 (23:10) UTC, representing 163899 consecutively registered non-repeating images with a 

total volume of ~8 GB. 

3. DATA CLASSIFICATION METHODOLOGY  

OF OPTICAL OBSERVATIONS OF THE SKY IN THE AURORAL ZONE 

To date, there is no standardized approach to classifying the structure and morphology of 

auroras. Specialists, as a rule, distinguish arcs, diffuse and discrete auroras (Table 1), while the 

terminology of one and the same type of auroras can differ significantly among different authors (e.g., 

[Nanjo et al., 2022] and [Sado et al., 2022]). In addition to belonging auroras to one of the 

deterministic types, images from photorecorders as such are often subjected to the classification 

procedure, resulting in additional classes that are not directly related to the auroras or the state of the 

ionosphere: full or partial cloudiness, lunar or solar illumination, clear sky, cloudiness, appearance of 

artifacts, etc. 

Table 1. 

As it follows from Table 1, the following set of sky states is most often proposed: arc, diffuse 

or discrete aurora, and no aurora or cloudiness. Less common is the "Moon" class, corresponding to 

lunar illumination of the image. 

Pursuing the goal of classifying the auroras by means of all-sky camera data, the most 

significant are the classes that explicitly characterize the presence and morphology of the auroras in 
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the observation area. Acting in accordance with the logic of some previous studies, the available 

images are proposed to be categorized as follows.  

1. Clear sky / no aurora (CNA from English Clear / No aurora) - images in which no auroras 

are unambiguously observed. 

2.  Discrete aurora (Discrete) - images with a pronounced and in some places discontinuous 

structure of the aurora resembling a spiral or vortex with brightness exceeding the brightness of 

background stars. 

3. Arc radiance or arc (Arc) - images that have one or two pronounced horizontal arcs of 

radiance. 

4. Diffuse radiance (Diffuse) - images that show large areas of radiance with blurred edges. The 

brightness of the auroras is comparable to or less than the brightness of the background stars. 

5. Horizon auroras - images in which most of the aurora is located near or below the horizon, 

making it difficult to accurately identify the actual structure of the aurora. 

6. Aurora but Cloudy (AC from Aurora but Cloudy) - images in which glow is observed in 

cloudy conditions, indicating the potential presence of aurora borealis, but, due to blurred geometry, 

it is not possible to unambiguously attribute it to one of the previously named classes. 

7. Defective images (Broken) - images, which have strong noise and/or other artifacts due to 

hardware or software failures. 

This classification is characterized by the presence of two new classes: "shines over the 

horizon" and "defective images". The first of these is designed to deal with the oversaturation of the 

"arc" class, visually similar to auroras near the horizon 

(Fig. 2d), but strictly speaking, they are not. The second one - "defective images" is necessary for 

filtering artifacts that make up 4-5% of the total number of images (Fig. 2g).  

Further, the expert group processed and brought 92987 images - 57% of the total number of 

available photographs of the sky - into compliance with the proposed classification. The ratio between 

the images - representatives of each class is shown in Table 2. 

Table 2. 

Fig. 2. 

Fig. 2 shows the characteristic representatives of the declared classes of images registered by 

obs. LOZ. 

In cases of superposition of aurora types (Fig. 3) on one image, the class identification is 

proposed to be performed by the hierarchical method based on the average brightness value of images: 

Discrete => Arc => Diffuse => Horizon. An exception to this rule are images of auroras near the 

horizon whose geometry only resembles an arc, i.e., the conclusion about the real structure of the 

glow is ambiguous. In such cases, the event is classified as "auroras beyond the horizon". In case of 
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difficulty in identification by experts of a glow belonging to one of the presented classes, the image 

was ignored. 

Fig. 3. 

4. FORMATION OF TRAINING AND TEST SAMPLES 

The manually partitioned 92987 images were divided into training and test samples in the ratio 

of 8:2, respectively. To increase the number of inputs, image mirroring with respect to the vertical 

(north− south) axis was used [Shorten et al., 2019]. Experience shows that the use of other data 

augmentation techniques can distort the information reflecting the morphological features of the polar 

lights evolution. Thus, for example, image mirroring relative to the horizontal (west− east) axis or 

image rotation by an arbitrary angle can provoke the loss of the trend of the appearance of more 

frequent and pronounced auroras in the northern region of the observed part of the sky. In turn, 

cropping or fragmentation of the image may cause loss of information about the relative position of 

the horizon line in the image and aggravate the problem of separating the classes of "arc" and "aurora 

borealis" types. 

5. SYNTHESIS AND VALIDATION OF A NEURAL NETWORK MODEL FOR AUTOMATIC 

CLASSIFICATION OF SKYLINE PHOTOREGISTRATION RESULTS 

The deep convolutional neural network architecture ResNet50 [He et al., 2016], pre-trained on 

the Imagenet dataset [Deng et al., 2009], consisting of 50 layers organized into 6 basic blocks, was 

used in this work (Fig. 4). The use of residual links in ResNet50 facilitates efficient training of the 

deep network to bypass the problem of fading gradients [Glorot and Bengio, 2010], which provides 

consistent best results relative to its counterparts: ResNet-18, AlexNet, VGG-19, etc. [Nanjo et al., 

2022; Kvammen et al., 2020; Endo and Matsumoto, 2022, etc.]. 

Fig. 4. 

According to this architecture, an image (224 px × 224 px × 3 channels) is received at the input 

of the network (224 px × 224 px × 3 channels), followed by a convolution block and three sequential 

operations: filtering the data through convolution, batch normalization, and applying nonlinear ReLU 

activation [Yarotsky, 2017], which allows iteratively finding important visual patterns (e.g., bright 

arc radiance boundaries). Next, a max-pooling layer is used, reducing spatial resolution, screening 

out less significant details, and focusing on dominant features. After passing the main block of 

residual layers in the Avg Pool block (Fig. 4), the data are averaged and fed to the final full-link layer 

responsible for classification. The result is processed by the softmax activation function converting 

the outputs into probability scores for each class. The class with the highest probability is identified 

as the final class. 

Table 3. 
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Table 3 presents the mismatch matrix of the classification result obtained on a test sample of 

18,557 images.  

A more detailed analysis of the data (Table 3) indicates the following aspects. 

- No radiance (CNA) and defective images (Broken) are identified with the highest accuracy: 

99.4% and 99.8%, respectively. Although in classification tasks approaching 100% accuracy is 

usually unattainable, in this case such values are explained by the definition of the class itself. In the 

case of CNA, the situation is different. False identification of this class occurs in 7.5% of cases during 

diffuse brightening and in 6% of "brightening and cloudy" cases. 

- The identification of arc, discrete auroras and auroras over the horizon has a rather high level 

of accuracy: 92.9, 89.7 and 92.2%, respectively. Here, false identification of the arc during the auroras 

over the horizon is observed in 2.6% of cases. In addition, 7.1% of discrete auroras overlap with arc 

auroras, caused by combined cases, which are processed according to the algorithm proposed above, 

or by the simultaneous presence of two or more arcs. 

- Diffuse auroras are successfully identified only in 75.2% of cases, which is initially due to the 

fuzzy features of their determination at the data partitioning stage.  

In multi-class image classification tasks, the weighted metrics Precision, Recall and F1 are key 

metrics to evaluate the quality of the resulting model. Compared to the simple use of Accuracy, they 

provide a more detailed picture of the imbalance of the radiance image classes. 

𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑙𝑙𝑤𝑤 = ∑ 𝑇𝑇𝑃𝑃𝑘𝑘
𝑇𝑇𝑃𝑃𝑘𝑘+𝐹𝐹𝑁𝑁𝑘𝑘

𝑊𝑊𝑘𝑘;𝐾𝐾
𝑘𝑘=1                                                 (1) 

 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛𝑤𝑤 = ∑ 𝑇𝑇𝑃𝑃𝑘𝑘

𝑇𝑇𝑃𝑃𝑘𝑘+𝐹𝐹𝑃𝑃𝑘𝑘
𝑊𝑊𝑘𝑘;𝐾𝐾

𝑘𝑘=1                                              (2) 

 
𝐹𝐹1𝑤𝑤 = ∑ 2𝑇𝑇𝑃𝑃𝑘𝑘

2𝑇𝑇𝑃𝑃𝑘𝑘+𝐹𝐹𝑁𝑁𝑘𝑘+𝐹𝐹𝑃𝑃𝑘𝑘
𝑊𝑊𝑘𝑘,𝐾𝐾

𝑘𝑘=1                                               (3) 

 
where Recallw, Precisionw and F1w are the weighted metrics Recall, Precision and F1, respectively; 

TPk, FPk, FNk, TNk are the true-positive, false-positive, false-negative and true-negative, respectively, 

elements of the sample with respect to class k [De Diego et al., 2022].  

The weight of the k-th class Wk was determined from the ratio of the number of labeled images: 

 
𝑊𝑊𝑘𝑘 = 𝑂𝑂𝑘𝑘

∑ 𝑂𝑂𝑘𝑘𝐾𝐾
𝑙𝑙=1

,                                                                 (4) 

 
where Ok is the number of labeled images. 

Table 4 shows the weighted and macro-averaged quality metrics of the classification system 

obtained by equating the value of Wk to 1/K. 
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The result of automatic image classification based on the proposed system is available at: 

(https://disk.yandex.ru/i/76OMyWR4YyVYuw ). 

Table 4. 

6. STATISTICAL ANALYSIS OF CLASSIFICATION RESULTS 

Fig. 5 shows the diurnal course of occurrence of different classes of auroras. The results 

obtained are consistent with the corresponding physical mechanisms and earlier studies [Nanjo et al., 

2022; Vorobev et al., 2023]. 

Fig. 5. 

For example, statistics indicate that auroras on the horizon (Fig. 5a) are most likely to occur in 

the pre- and post-midnight hours, while observing an arc (Fig. 5b) or discrete auroras (Fig. 5c) is 

justified at midnight. The situation seems to be explained by the movement (relative to the observer) 

of the auroral oval from east to west (pre-midnight and post-midnight maxima, respectively). The 

auroras on the horizon at midnight are observed predominantly in the north and south and are caused 

by the latitudinal drift of the auroral zone boundaries. 

The observation of auroras during cloudiness (Fig. 2e) reflects an integral (for all types of 

auroras) probability distribution pattern, which has the highest symmetry relative to the local 

midnight and has the maximum standard deviation along the time axis (Fig. 5d). In contrast, discrete 

(to a lesser extent arc) auroras have a pronounced excess in the vicinity of midnight, with the distance 

from which the probability of their observation sharply decreases. 

The heterogeneity of the statistics of diffuse auroras (Fig. 5d) can again be explained by the 

difficulties associated with their identification and, as a consequence, by the sensitive fraction of 

inclusions, false positives and false negatives. 

A preliminary comparison of the HIT level registered at the 330 kV Vykhodnaya substation 

(68.83° N, 33.08° E) of the Northern Transit main power grid (http://gic.en51.ru) [Selivanov et al., 

2023] with the classification results revealed that during the periods of discrete auroras the HIT level 

with a probability of 7.5% exceeds the threshold of 10 A, while during diffusion-type auroras the 

probability of reaching 10 A is only 0.31%. 

Also the statistics considered in the first approximation indicates that during the periods of 

discrete auroras the HIT level with a probability of 50% exceeds 2.58 А. With the same probability 

during the auroras of the "arc" type, the HITs overcome the threshold of 0.98 A. During periods of 

diffuse auroras or in the absence of auroras as such, the HIT level with a probability of 50% does not 

exceed 0.72 and 0.41 A, respectively. 

7. DISCUSSION OF RESULTS 

https://disk.yandex.ru/i/76OMyWR4YyVYuw
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 The proposed classification approach, realized in ensemble with accumulated statistics of 

space weather effects on high-latitude technological systems, can be used in the tasks of hardware-

free assessment of technosphere risks, failures and failures. 

 Unpretentiousness, autonomy, relatively low cost and ease of operation of all-sky cameras 

provide a global trend of growth in the number of information sources of this kind. Obviously, along 

with this, there is an increasing need for efficient solutions that automatically analyze and classify the 

recorded information, detect hidden patterns, and formulate preliminary conclusions. 

The quality metrics achieved in this work demonstrate a high relevance of the results generated 

at the output of the information system, but additional research is required to investigate the issues 

related to the applicability of this approach to images obtained using different hardware from the 

hardware used at the LOZ station. 

7. CONCLUSION 

For most high-latitude regions of Russia (due to the lack of sufficient coverage by reliable 

sources of operational information on the local geomagnetic situation), auroras remain practically the 

only publicly available indicator of space weather conditions. 

There are studies indicating that the area of polar lights observation, their luminescence 

intensity and morphology correlate with the power of manifestation of space weather effects on high-

latitude technological systems.  

Based on the ResNet50 deep convolutional neural network architecture and pre-trained on the 

Imagenet dataset, the information system provides ~96% accuracy in aurora classification, which is 

practically unattainable with manual or semi-automatic processing of large amounts of data. 

The statistics considered in the first approximation indicates that during the periods of 

observation of discrete auroras with a probability of 7.5% the GIT level exceeds 10 A, while during 

diffusion auroras the probability of reaching the same level is 24 times lower. 

 Thus, the proposed approach to automatic classification of polar auroras can be applied in the 

tasks of hardware-free diagnostics of the upper ionosphere, technospheric risk assessment, and as a 

decision support tool for conducting relevant studies.  

The result of automatic image classification based on the proposed system is available at: ( 

https://disk.yandex.ru/i/76OMyWR4YyVYuw ). 
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Table 1. Classification systems for all-sky camera images 

Arc Diffuse Discrete Cloudy 

Clear  

No 

aurora 

Other classes Source 

+ - - - + 

Radiation corona, 

Hot-spot corona, 

Drapery corona 

[Zhong et 

al., 2018]. 

+ + + + + Moon 

[Clausen 

and 

Nickisch, 

2018] 

+ 
+ 

(Patchy) 
+ - 

+ 

(Faint) 

Breakup, Colored, 

Edge,  

[Kvammen 

et al., 

2020]. 

+ + + + + Moon 

[Endo and 

Matsumoto, 

2022] 

+ + + + + 

Aurora but Bright, 

Aurora but Cloudy, 

Dusk and Dawn. 

[Nanjo et 

al., 2022] 

+ + + + + Moon 
[Sado et al., 

2022] 

+ + + + + Moon 
[Lian et al., 

2023] 
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Table 2. Ratio of occurrence of images belonging to different classes recorded by the obs camera. 
LOZ 

Occurrence 

Class 

C
le

ar
 sk

y 

D
is

cr
et

e 
au

ro
ra

s 

A
rc

 

D
iff

us
e 

au
ro

ra
 

G
lo

w
 o

ve
r t

he
 

ho
riz

on
 

G
lo

w
 

an
d 

cl
ou

dy
 

D
ef

ec
tiv

e 
im

ag
es

 

N 51 278 1 201 3 078 2 806 5 908 24 560 4 159 

P, % 55.1 1.3 3.3 3.0 6.4 26.4 4.5 

Note: N - number of events of the given class; P - share of the total number of events. 
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Table 3. Matrix of image classification inconsistencies 

Truth 

ANN 

Glows 

and cloudy 
Arc glow 

Defective 

images 
Diffuse Discrete 

Clear sky/ 

no auroras 

Auroras 

over the 

horizon 

Lights 

and cloudy 
93.5 0.1 0.0 0.2 0.1 6.0 0.2 

Arc glow 1.0 92.9 0.0 1.4 2.0 1.5 1.2 

Defective 

images 
0.2 0.0 99.8 0.0 0.0 0.0 0.0 

Diffuse 

radiance 
2.2 7.5 0.0 75.2 3.1 7.5 4.6 

Discrete 

radiance 
1.3 7.1 0.0 0.9 89.7 0.4 0.4 

Clear skies/ 

no auroras 
0.4 0.0 0.0 0.0 0.0 99.4 0.1 

Lights over 

the horizon 
1.4 2.6 0.0 0.7 0.0 3.1 92.2 
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Table 4. Quality metrics of the polar lights classification system 

Class 

Metric                            

Recall, % Precision, %  F1, % 
Number  

images 

Glow and cloudy 93 98 96 4933 

Arc radiance 93 85 89 589 

Defective images 100 100 100 817 

Diffuse glow 75 94 83 548 

Discrete glow 90 86 88 224 

Clear skies / no auroras 99 96 98 10292 

Auroras over the horizon 92 95 94 1154 

Total weighted 96 96 96 18557 

Total macro-averaged 92 93 92 18557 
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FIGURE CAPTIONS  

 

Fig. 1. State of the sky registered by the all-sky camera of obs. Lovozero during December 21, 2016: 

(a) no auroras; (b) diffusion auroras; (c) auroras of the "arc" type; (d) auroras of the "vortex" type. 

 

Fig. 2. Characteristic representatives of the classes of images considered in this work: (a) clear sky; 

(b) arc; (c) discrete auroras; (d) diffusion auroras; (e) auroras over the horizon; (f) auroras and 

cloudy; (g) defective images (images taken from the PIG resource 

(http://aurora.pgia.ru:8071/?p=2)). 

 

Fig. 3. Examples of combined auroras: (a) superposition of diffuse and arc aurora, identified 

according to the proposed rule as arc aurora; (b) arc aurora observed near the horizon, identified as 

aurora on the horizon. 

 

Fig. 4. ResNet50 network architecture. 

 

Fig. 5. Daily course of occurrence of auroras of different classes: (a) aurora on the horizon; (b) arc 

aurora; (c) discrete aurora; (d) aurora and cloud cover; (e) diffuse auroras. 
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Fig. 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 19 

  
a b 

  
c d 

 
e  

 

 

Fig. 5. 

 

 

 
 
 
 
 
 
 
 


